If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-5=35
We move all terms to the left:
2x^2-5-(35)=0
We add all the numbers together, and all the variables
2x^2-40=0
a = 2; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·2·(-40)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*2}=\frac{0-8\sqrt{5}}{4} =-\frac{8\sqrt{5}}{4} =-2\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*2}=\frac{0+8\sqrt{5}}{4} =\frac{8\sqrt{5}}{4} =2\sqrt{5} $
| m=2/3;(6,1) | | 3(x+2)=3x-63(x+2)=3x-63(x+2)=3x-63(x+2)=3x-63(x+2)=3x-63(x+2)=3x-63(x+2)=3x-63(x+2)=3x-63(x+2)=3x-63(x+2)=3x-63(x+2)=3x-63(x+2)=3x-63(x+2)=3x-63(x+2)=3x-63(x+2)=3x-63(x+2)=3x-63(x+2)=3x-63(x+2)=3x-6 | | 6y=(2y+12)=29 | | -12x-24=8x+20 | | 6s-8-106=90 | | m=-2(7,-4 | | 6s-8-106=180 | | h-10=3 | | 1-(-4x)=9 | | 15=8+j | | (x^2+9)(x^2-4x+5)=0 | | 6s-8+106=90 | | 4x-52=32 | | 17=1/5n-20 | | 3(x+2)-4(x-3)=-36 | | 20–8x=–3(8x+4) | | 8(1+2x)+72=-153 | | 4p-27=p | | 41x-12=3X+9 | | 9n+2+34=90 | | T(x)=1-2x | | 41x-12=3x÷9 | | b+64=5b | | 92x+88=4x-61 | | 2s+2+4s-8=90 | | -2r=30 | | 2s+2+4s-8=180 | | p^2+6=-30 | | X=63a+2 | | X(3x+1)(x+7)=0 | | 3r+4+8r-2=180 | | p^+6=-30 |